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Time-dependent rotation of counterpropagating mutually incoherent

self-trapped Gaussian beams in periodic optically induced fixed photonic

lattices is numerically investigated. Rotation occurs for some values of con-

trol parameters. For parameters of such rotation, the solitonic solutions are

found using modified Petviashvili’s method. It is shown that they corre-

spond to the lowest values of propagation constant in the power diagrams

and relation between observed rotation and less confined discrete solitonic

solutions are demonstrated.

PACS numbers: 42.65.Tg, 42.65.Sf

1. Introduction

Light propagation in periodic photonic structures has attracted growing in-
terest to both fundamental physics and applications in recent years [1]. Opti-
cally induced photonic lattices (PLs) provide an excellent opportunity for studying
many interesting phenomena of light propagation balanced between discreteness
and nonlinearity [2–5]. Some of them are the intrinsic localized modes, so-called
discrete or lattice solitons [6–10]. Another interesting phenomenon attractive for
all-optical manipulation of light is soliton rotation, theoretically considered [11]
and experimentally confirmed [12] in the Bessel-like ring lattices. In addition,
soliton rotation can be found in other diverse fields, such as Bose–Einstein con-
densates, but also in radially periodic potentials (lattices) [13]. We numerically
investigated vortex-induced rotating structures [14], but in periodic PLs. Here, we
demonstrate Gaussian-induced rotation in these PLs and discuss its relation with
less confined discrete solitons. We report a numerically time-dependent stable
rotating beam structure, resulting from the collision of two counterpropagating
(CP) mutually incoherent self-trapped Gaussian beams in periodic optically in-
duced fixed PL. Bifurcation from Gaussian into rotating structures is due to the
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fact that a spatial symmetry breaking is associated with a supercritical Hopf bi-
furcation in the time domain. In these systems the rotation dynamics is realized
through tunneling between lattice sites [15, 16]. For parameters for which rota-
tional dynamics occurs, we have analyzed solitonic solutions by using the modified
Petviashvili method [17, 18], and we have found the relation between rotating
structures and solitonic solutions. Quite unexpectedly, it has been discovered that
solitonic solutions, derived for the steady state of governing equations, can help
in finding parameters of Gaussian-induced time-dependent rotation. All of this is
done by considering hexagonal/triangular PL with a central defect.

2. Numerical results and discussion

The behavior of CP beams in PLs is described by a time-dependent model
consisting of wave equations in the paraxial approximation for the propagation of
CP beams and a relaxation equation for the generation of the space charge field
in the photorefractive crystal. The model equations in the computational space
are [19]:

i∂zF = −∆F + ΓEF, −i∂zB = −∆B + ΓEB, (1)

τ∂tE + E = − I + Ig

1 + I + Ig
, (2)

where F and B are the envelopes of the forward and backward propagating beams.
∆ is the transverse Laplacian, Γ is the beam coupling constant, and E — the
homogeneous part of the space charge field. I = |F |2 + |B|2 is the laser light
intensity, measured in units of the background intensity Id. Ig is the intensity
distribution of the optically induced lattice array. τ is the relaxation time of
the crystal, which also depends on the total intensity, τ = τ0/(1 + I + Ig) , and
consequently on the spatial coordinates. The numerical procedure is as in Ref. [19].

Fig. 1. Gaussian-induced rotation: intensity distribution of backward beam at its exit

face of the crystal, presented at different times. Parameters Γ = 25, input FWHM of CP

Gaussian beams 11 µm, beam power 3.80, the propagation distance is L = 2LD = 8 mm

and |F0|2 = |BL|2 = 1Id.
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We consider a lattice array with a triangular arrangement of beams and
with the central beam absent. We launch head-on CP Gaussian beams into the
center of the lattice, parallel to the lattice beams. We found very clear and peri-
odical rotation (Figs. 1 and 2) in a very narrow region of the control parameters.
Each Gaussian beam collapses to a displaced soliton-like beam, and after transient
dynamics they start to rotate indefinitely. Since for parameters of such stable pe-
riodic solutions there are no stable steady states and since, in numerics, Eq. (2)
becomes equivalent to the scalar nonlinear delay differential equation, this phe-
nomenon is recognized as supercritical Hopf bifurcation [20]. The central parts
of Gaussians rotate regularly in the center of the lattice, owing to the defect,
along the whole crystal. Filaments rotate with the constant period away from
the center along symmetry axes of the lattice by tunneling between lattice sites,
but only close to its exit face of the crystal. Gaussian-induced rotating structures
present soliton-like solutions, because they preserve shape along the main symme-
try direction during rotation. The physical origin beyond rotation is incoherent
interaction and spontaneous symmetry breaking, while rotation is realized through
Zener tunneling [15, 16]. Observed rotating structures are stable in the presence
of up to 5% noise added to the input beam intensity and phase. Spontaneous sym-
metry breaking via noise chooses the direction of rotation, both directions occur
with 50% probability. For the same control parameters, CP Gaussian beams show
very irregular dynamical behavior in the absence of any lattice, but very stable
propagation is found in the lattices without defects (not shown).

Fig. 2. Isosurface plots of a rotating structure presented in Fig. 1 at characteristic

times.

For geometry and parameters that allow stable rotation, we investigate the
existence of the solitonic 2D solutions. In order to do that, we consider Eqs.
(1) and (2) in the steady state. Because of their symmetry, the above equations
suggest the existence of a fundamental 2D vector soliton solution in the form

F = u(x, y) cos θ exp(iµz), B = u(x, y) sin θ exp(−izµ), (3)
where µ is the propagation constant and θ is an arbitrary projection angle (θ = π/4
here; the same analysis also corresponds to the copropagating geometry but with
the choice θ = 0). When this solution is substituted into Eqs. (1), they both
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transform into one, degenerate equation

−µu + ∆u + Γu
|u|2 + Ig

1 + |u|2 + Ig
= 0, (4)

The solitonic solutions can be found from Eq. (4) by using the modified Pet-
viashvili iteration method. Here we just determine different classes of spatial
vector solitons, assuming that they are stable and observable over certain crystal
lengths.

Fig. 3. Power diagram of solitonic solutions. Various symbols indicate different kinds

of solitonic solution, characterized by corresponding profiles. Lattice parameters are as

in Fig. 1, and Γ = 25.

Figure 3 shows power diagram together with the characteristic solitonic so-
lutions. In the search for solitonic solutions, we used the same Gaussian input
beams and parameters Γ as in the numerical simulations. We varied the propaga-
tion constant µ to find the beam power (P =

∫∞
−∞

∫∞
−∞ |u|2dxdy) corresponding to

the beam power of the stable rotating structures. We found power for µ = 20.751
(P = 3.80) (shown by appropriate profiles in Fig. 3). Such solitonic solutions could
be found only in the very narrow region near the lowest value of µ. Of course,
because of the CP geometry, these solitonic solutions are stable, but only up to the
some critical values of propagation distance [21]. In Fig. 3 we present only those
intervals of µ, since there are no solitons for lower values of µ, while for larger
values solitonic solutions are nonphysical owing to the very large peak intensity
(in comparison with the maximum lattice intensity I0).

In power diagram (Fig. 3) filled circles represent all characteristic types of
symmetric discrete solitonic solution. By increasing the propagation constant µ

these solutions become more localized. Only for the beam powers corresponding
to the less localized solitonic solutions one can find Gaussian-induced rotation
in numerical simulations. Similar power diagrams are found for the same lattice
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geometry, but for different values of the coupling constant Γ . Again, the same
types of symmetric discrete solitonic solution are found, and, for the beam powers
corresponding to the less confined solitonic solutions, Gaussian-induced rotation
can be found for some values of propagation distance. This procedure provides a
more convenient way of finding Gaussian-induced rotation in numerics, as well as
in experimental consideration of this interesting phenomenon.

3. Conclusion

In conclusion, we stress that, in contrast to the results given in the literature,
where 2D spatial rotation in ring periodic lattices were discussed, we observed 3D
time-dependent rotation in triangular PL. For the parameters of such rotation, we
found solitonic solutions that correspond to the lowest values of the propagation
constant in the power diagram. To find rotating structures for the discussed lattice
geometry, it is more convenient to find less confined symmetric solitonic solutions
by varying propagation constant µ and then, for the same coupling constant Γ
and beam power, to look for the propagating distance for which rotation occurs,
either in numerical simulations or in experiments. Moreover, we believe that our
procedure is applicable, besides to Kerr-type nonlinearities, to any system that
can be described by a modified nonlinear Schrödinger equation with a periodic
potential, such as Bose–Einstein condensates in optical lattices.
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