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In this paper we analyzed the following model: a thin slab with Kerr

nonlinearity placed between two semi-infinite samples of linear and nonmag-

netic materials. A general relation between the bidirectional group delay and

the dwell time is derived for the thin slab. It is shown that the group delay

is equal to the dwell time plus a self-interference delay. Particular attention

is given to solving the Helmholtz equation for this case. Detailed and rig-

orous treatment revealed that the solutions of the Helmholtz equation are

given via elliptic functions of the first kind. The boundary conditions at the

interfaces are determined precisely. Finally, we provide an overall procedure

for numerical calculation of the dwell times.

PACS numbers: 42.25.Bs, 42.65.Hw, 42.6.Tg, 03.65.Xp

1. Introduction

It is well known that the tunneling represents a typically quantum-
-mechanical phenomenon. Soon after the discovery of tunneling, Condon has raised
the question of the speed of the tunneling process (in 1931) [1]. The papers pub-
lished in the nineteen fifties [2–4] have provided analytical expressions for the time
delays, suggesting those times to be very short but finite. Since then, the mat-
ter of defining various delay times and the interpretation of obtained expressions,
has been in the focus of research with both theoretical and applied quantum me-
chanics, which is illustrated by the large number of review papers on this subject
(e.g. [5–7]).

On the other hand, given the deep analogy between the Schrödinger equa-
tion and the Helmholtz equation, and the fact that the tunneling is present in
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propagation of electromagnetic waves through optically heterogeneous media, cer-
tain amount of attention has been devoted to the problem of finding delay times
in these conditions, as well. In that respect, the following papers may be very
helpful: a paper by Winful [8], and experimental work of Enders and Nimtz [9],
Steinberg [10] and Spielmann et al. [11].

In this paper we analyze the delay times of electromagnetic waves in a thin
slab with Kerr-type nonlinearity (e.g. [12]). The presence of this type of nonlin-
earity introduces considerable complications to the analytical expression, but on
the other hand, it allows for manifestation of novel effects.

2. Theoretical considerations

In case of a high-intensity pulse, the material response, which we shall take to
be nonmagnetic, becomes dependent on the electric field intensity. If the material
may be considered isotropic, its relative permittivity, ε, may be written as

ε = εL + αNL|E|2, (1)
with only the lowest order of nonlinearity taken into account. Let us consider a
slab of thickness L made of such a material, put in vacuum and irradiated with
a transverse electric (TE) wave. We shall label the axis perpendicular to the
slab with x, let the electric field be pointed along the y-axis and assume that the
propagation constant along the z-axis is β. Further, we assume that the time
variation of all the fields is described with single angular frequency ω and that the
propagation constant of the TE plane wave incident on the slab is k0.

The Helmholtz equation within the slab reads

d2Ey/dx2 +
(
κ2 + αNLk2

0|Ey|2
)
Ey = 0, κ2 = εLk2

0 − β2, 0 < x < L. (2)
with β = k0 sin θ, where θ is the angle of incidence. The reflected, Er, and transmit-
ted, Et, fields are given in terms of the reflection, R, and transmission coefficient,
T , with

Er = RE0 exp(−ik0x cos θ) and Et = TE0 exp(ik0x cos θ), (3)
where E0 is the complex amplitude of the incident wave. To find R and T , we
have to solve (2), which we rewrite as

Ẽ′′
y +

(
1 + 2

∣∣∣Ẽy

∣∣∣
2
)

Ẽy = 0, Ẽy = Ey/p, p =
√

2/αNLκ/k0, (4)

here and in rest of the paper, the symbol ′ denotes differentiation with respect to
ξ, where ξ = κx. Introducing real numbers r and ϕ with

Ẽy = r exp(iϕ), (5)
Eq. (4) may be separated in two equations with real quantities. From the imagi-
nary part of (4) we obtain

ϕ′ = α/r2, (6)
and the real part of (4) yields
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r′′ − α2/r3 + r + 2r3 = 0, i.e. r′2 + α2/r2 + r2 + r4 = C, (7)
with C being a constant across the slab which we will, together with α, evaluate
later. Let us consider the cubic equation

t3 + t2 − Ct + α2 = 0, (8)
the roots of which we label t1, t2 and t3. It is easy to verify that introducing a
new variable u with

r2 = τ2u
2 + t1, τ2 = t2 − t1, (9)

into (7) enables us to recast it as

u′2 + (1− u2)(τ3 − τ2u
2) = 0, τ3 = t3 − t1. (10)

Now, it is straightforward to write down the solution for u in terms of the Jacobi
elliptic function sn, namely

x = F (u, q) =
∫ u

0

dν√
(1− ν2)(1− q2ν2)

⇒ u = sn(x, q). (11)

However, before doing so, we shall point out the right boundary conditions
and determine on which domain should (10) be integrated. Firstly, we know that
Ey and dEy/dx are continuous in every point, since they correspond to the tan-
gential components of the electric and magnetic field, respectively. Secondly, since
the x component of the time-averaged Poynting vector is constant and nonzero
along the structure (we assume that the dissipative losses can be neglected), we
have that r is strictly positive, meaning that dr/dx is, also, continuous along the
structure and the same holds for ϕ and dϕ/dx. Therefore, we may evaluate α and
C at x = L+, giving

α =
αNL|Et|2k4

0 cos4 θ

2κ4
and C =

p2α2

|Et|2 +
|Et|2
p2

+
|Et|4
p4

. (12)

Taking a closer look at our problem, it should be clear that the solution is
easier obtained if we take that |Et| is given instead of E0, which we find at the
end. Therefore, in integrating (10) we take that the lower limit is the point where
the field is calculated, ξ, and for the upper limit we take ξ = κL. Finally, we
obtain the solution for |Ey|:

∣∣∣Ey

∣∣∣
2

= p2

{
t1 + τ2sn2

[
±i
√

τ3κ(L− x) + F

( |Et|2/p2 − t1
τ2

, q

)
, q

]}
,

q =
√

τ2

τ3
. (13)

To keep it short, we now briefly explain how R and T are found. First, we
assume that |Et| is given and calculate α, C, t1, t2, and t3. Then, using (13),
we obtain the solution for |Ey| and its derivative, which can also be expressed in
analytic form using

d[sn(x, q)]/dx = cn(x, q)dn(x, q), (14)
with cn and dn being, also, known Jacobi elliptic functions. Then, using the
boundary conditions at x = 0 and |R|2 + |T |2 = 1, we obtain |E0|, |R|, and |T |.
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Next, we numerically integrate (6) to find the phase difference across the slab and,
finally, we find numerically the phases of R and T , φr and φt, respectively.

Now, we proceed to use these results and calculate the delay times for the
Kerr-type nonlinear slab. First, we state the expression for the overall electromag-
netic energy, W , within the slab (obtained directly from the Poynting theorem):

W =
Sε0

2

∫ L

0

ε
(|Ey|2

) |Ey|2dx− Sk0 cos θE2
0

2ω2µ0
Im(R), (15)

where S is the cross-section surface of the structure, perpendicular to the x-axis.
To determine the delay times through the thin slab, and the way they are in-
terrelated, we will apply the procedure previously used in the literature for the
analogous problem of electrons tunneling through a potential barrier. Equation (2)
can be modified to read

d2Ey(x)
dx2

+ κ2Ey(x) = 0, κ2 ≡ ε(|Ey|2)ω2

c2
− β2. (16)

We first differentiate Eq. (16) with respect to ω, and subsequently multiply it
by E∗

y to obtain our first equation. Similarly, the conjugation of Eq. (16), followed
by multiplication by dEy/dω provides another equation, from which the first one
should be subtracted and the end result integrated along the slab (from 0+ to L−),
leading to

P = E∗
y

d2Ey

dxdω
− dE∗

y

dx

dEy

dω

∣∣∣∣∣

L−

0+

= −2ω

c2

∫ L

0

ε|Ey|2dx. (17)

And now, the value of P can readily be taken from Ref. [13], Eq. (8), in the
form

P = −2k

(
|T |2 dϕ0

dω
+ |R|2 dϕr

dω
+

Im(R)
k

dk

dω

)
E2

0 , k = k0 cos θ. (18)

From Eqs. (17) and (18) we obtain an important auxiliary result
∫ L

0

ε(|Ey|2)|Ey|2dx =
kc2

ω

(
τg +

Im(R)
k

dk

dω

)
E2

0σ, (19)

σ =



1−

sin2 θ + ωαNLRe
(
Ey

dE∗y
dω

)

ε(|Ey|2))|





−1

where we have used the definition of group delay from [7], i.e. τg = |T |2 dϕ0
dω +

|R|2 dϕr
dω (ϕ0 ≡ kL + ϕt). With the use of (19) we arrive to the expression for the

total energy within the slab

W =
Sε0c

2E2
0

2ω

[
στg + Im(R)

(
1
k

dk

dω
− 1

ω

)]
. (20)

The input power is Pin = Sε0c
2E2

0/2ω, so (20) reduces to
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W

Pin
= τgσ + Im(R)

(
1
k

dk

dω
σ − 1

ω

)
. (21)

By defining the dwell time τd as τd = W/Pin, and the interface time as
τi = −Im(R)

(
1
k

dk
dω − 1

ω

)
W/Pin, we obtain

τd = στg − τi. (22)

3. Numerical results

Given that the group delay requires the knowledge of derivatives dϕr/dω

and dϕ0/dω, it is convenient to start by determining the dwell time according to
the formula

τd =
ω

kc2E2
0

[∫ L

0

(
εL|Ey|2 + αNL|Ey|4

)
dx

]
− Im(R)

ω
, (23)

and then we calculate the interference time, τi. Finally, the group delay is found
according to τg = (τd + τi)/σ.

Fig. 1. Dependence of (a) τd and (b) τi on αNL|E0|2/εL drawn for several values of the

incident angle θ. Calculations were carried out for λ0 = 1 µm, L = 5 µm, and εL = 2.

Figure 1 shows the typical behaviour of delay times as the field intensity is
increased. For larger nonlinearities several stable states exist to which correspond
different delay times.

4. Conclusion

This paper provides a comprehensive analysis of the problem of calculating
the delay times (dwell time, group time, and interference time) which characterize
the transmission of electromagnetic waves through a thin slab with Kerr-type
nonlinearity present. Particular consideration is given to the complex task of
determining the field distribution within the slab. For this purpose, the Helmholtz
equation is decomposed into two equations, one describing the amplitude of the
field, and the other describing the phase of the field. While the second equation
can easily be reduced to a simple integral equation, the solutions of the first one
are given via elliptic functions. A simple analysis shows that all the required
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constants can be obtained from two boundary conditions. Upon resolving the field
distribution, in the second part of the paper, we derive the appropriate expressions
for all three types of delay times and propose an adequate sequence in which they
should be numerically evaluated. Based on the theoretical analysis presented here,
our further work will focus on calculating the delay times in particular structures
and the discussion of acquired numerical data.
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[11] Ch. Spielmann, R. Szipöcs, A. Stingl, F. Krausz, Phys. Rev. Lett. 73, 2308

(1994).

[12] W. Chen, D.L. Mills, Phys. Rev. B 35, 524 (1987).

[13] H.G. Winful, Phys. Rev. Lett. 91, 260401 (2003).


