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A microscopic theory of optical properties of thin molecular films, i.e.

quasi 2D systems bounded by two surfaces parallel to XY planes was formu-

lated. Harmonic exciton states were calculated using the method of two-time,

retarded, temperature dependent Green’s functions. It was shown that two

types of excitations can occur: bulk and surface exciton states. Analysis

of the optical properties (i.e. dielectrical permittivity) of these crystalline

systems for low exciton concentration shows that the permittivity strongly

depends on boundary parameters and the thickness of the film. Influences of

boundary conditions on optical characteristics of these nanostructures were

especially analyzed.

PACS numbers: 71.35.Aa, 77.55.+f, 78.20.–e, 78.67.-n

1. Introduction

Molecular crystals are used as materials for light energy conversion. We
study the basic physical characteristics of ultrathin dielectrics–ultrathin molecular
crystalline films, which could be used as surface layers for electronic component
protection, or as some specific and very narrow light filters.

The aim of this paper is the analysis of the influence of finite dimensions
of crystalline ultrathin films and boundary conditions onto the optical properties
(i.e. absorption of external electromagnetic field — represented by the dielectric
permittivity), caused by the generation of the excitons. We base our analysis on
the standard exciton Hamiltonian [1, 2]:

H =
∑
n

∆nP+
n Pn −

∑
nm

VnmP+
n Pm −

∑
nm

WnmP+
n PnP+

mPm, (1)

where ∆n denotes the excitation energy of an isolated molecule localized at the
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site n ≡ (nx, ny, nz) while Vnm and Wnm represent the matrix elements of
dipole–dipole interaction. As orbitals overlap only for neighbor molecules, nearest-
-neighbor approximation is used.

For low exciton concentrations, in harmonic (Bose) approximation [3], we
get

H =
∑
n

∆nB+
nBn −

∑

n,λ

VλB+
nBn+λ. (2)

The fact that the film of finite dimension only along z-directions (orthogonal to the
film boundary surfaces) is expressed in terms of the conditions: nz = 0, 1, 2,. . . ,
Nz, Nz ∝ 10, nα ∈ [−Nα/2,+Nα/2], Nα ∝ 108, α = (x, y). Exciton energies must
be redefined because of the presence of film boundaries. The parameters ε0/Nz

define the change of the exciton energy at the surface layers of the film, and ν0/Nz

define the change of the transfer energy within the surface layers and the layers
nearest to them (along z direction):

∆n ≡ ∆ (1 + ε0δnz,0 + εNzδnz,Nz ) ,

Vn,n+λz ≡ Vz (1 + ν0δnz,0 + νNzδnz,Nz−1) ,

Vn,n−λz ≡ Vz (1 + ν0δnz,1 + νNzδnz,Nz ) . (3)

2. Exciton energies and spectral weights

Excitons energies in molecular ultrathin films will be determined by Green’s
functions method [4–6]. We study single-exciton, two-time dependent commutator

Green’s function Gn;m(t) =
〈〈

Bn(t)
∣∣∣B+

m(0)
〉〉

and corresponding equation of

motion. Performing the time and partial spatial XY Fourier-transformation in the
nearest neighbor approximation we obtain the system of Nz + 1 non-homogeneous
algebraic-difference equations

Gnz,mz

[
ρ− ∆

Vz
(ε0δnz,0 + εNzδnz,Nz )

]
+ Gnz+1,mz (ν0δnz,0 + νNzδnz,Nz−1)

+Gnz−1,mz (1 + ν0δnz,1 + νNzδnz,Nz ) =
ih̄

2πVz
δnz,mz , (4)

where

ρ =
h̄ω −∆

Vz
+ 2(cos axkx + cos ayky). (5)

The determination of Green’s function poles, which define the spectrum of
possible exciton energies, turns into the calculation of the roots of the determinant
of the system of equations

DNz+1(ρ) =
(

ρ− ∆
Vz

ε0

)
×

(
ρ− ∆

Vz
εNz

)
CNz−1 −

[(
ρ− ∆

Vz
ε0

)
(1 + νNz )2

+
(

ρ− ∆
Vz

εNz

)
(1 + ν0)2

]
CNz−2 + (1 + ν0)2(1 + νNz )2CNz−3 ≡ 0, (6)
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where CN are the characteristic N order Chebyshev’s polynomials

(CN−1 = ρCN − CN+1). (7)
In the general case, Eq. (6) is not analytically solvable so numerical methods

must be applied, although there are some analytically solvable cases of Eq. (6) for
some specific boundary conditions (Dirichlet, Newman) [7]. For given numerical
values of the parameters Nz, ε0/Nz

and ν0/Nz
one can obtain the numerical values

for ρν from Eq. (6). Substituting them into (5), the exciton dispersion law becomes

Exy(ν) = Fxy + Gν , (8)
where

Exy(ν) ≡ h̄ω

Vz
, Fxy =

∆
Vz
− 2(cos axkx + cos ayky);

Gz(kx, ky; ν) ≡ ρ(kx, ky; ν). (9)
The most important conclusion is that the energy spectra of excitons is

discrete with the finite number of energy levels (Nz + 1), compared with bulk
crystal where exciton energies take continual values within band zone.

Without influence of perturbation parameters or by their suitable choice, one
obtains that the whole spectrum lies within the energy band of the bulk crystal.
For other values of surface parameters, there arise localized exciton states at the
surface film layers and exciton energies could take values outside of bulk energy
band.

To calculate the space distribution of excitons we will write the system of
equations for Green’s functions in matrix form

D̂Nz+1G̃Nz+1 = K̃Nz+1, (10)
where D̃Nz+1 is system matrix, while G̃Nz+1 and K̃Nz+1 are vectors

G̃Nz+1 = (G0,mz , G1,mz , . . . , Gnz,mz , . . . , GNz,mz ) ;

K̃Nz+1 =
ih̄

2πVz
(δ0,mz , δ1,mz , . . . , δnz,mz , . . . , δNz,mz ) .

Using the properties of inverse matrix, one can get Green’s functions in the fol-
lowing form:

Gnz ;mz =
ih̄

2πVz

Dnz ;mz

DNz+1
, (11)

where Dnz ;mz are cofactors of DNz+1 determinant. Factorizing the expression (11)
we can write [4–10]:

Gnz ;mz =
ih̄

2πVz

Nz+1∑
ν=1

gnz ;mz (ρν)
ρ− ρν

, (12)

where spectral weights are

gnz ;nz =
Dnz ;nz (ρν)

d
dρDnz+1(ρ)|ρ=ρν

. (13)
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3. Relative permittivity

The expression for the relative permittivity of the system has the following
form [11]:

ε−1
r (ω) = 1− 2πiS[G(+ω) + G(−ω)], (14)

where S = τ0E
2
0/8πh̄ (τ is the elementary cell volume and E0 is the electrical field

per elementary cell). We can rewrite this expression using the factorized Green
functions

ε−1
nz

(ω) = 1− h̄S

Vz

Nz+1∑
ν=1

[
gnz

(ρν)
ρ(+ω)− ρν

+
gnz

(ρν)
ρ(−ω)− ρν

]
. (15)

Relative permittivity is directly related with optical properties (i.e. absorption) of
materials, it is a measure of “dielectric response” of material on external electro-
magnetic field. The most important parameters on optical behavior of ultrathin
films are film thickness (number of layers) and boundary conditions which are rep-
resented with perturbation parameters ε0/Nz

and ν0/Nz
. In the past theoretical

research of these exciton systems in ultrathin film structures [12] each of these
perturbation parameters was investigated in particular, but in this paper we will
present results of parallel influence of both perturbations, but only on one side

Fig. 1. Dielectric permittivity εnz dependence of non-dimensional electromagnetic field

ξ = h̄ω/|V ∈ [40, 25]| on last layer of 5-layered film with εNz = 0, νNz = 0, i.e. without

perturbation.

Fig. 2. Dielectric permittivity on last layer with perturbation εNz = 0.1, νNz = 2.

Fig. 3. Dielectric permittivity on last layer with εNz = 0.1, νNz = −0.6.
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TABLE

Probabilities of finding excitons

with particular energy gnz ;nz .

Fig. 1 Fig. 2 Fig. 3

E1 0.08333 0.09076 0.00052

E2 0.25000 0.05030 0.00184

E3 0.33333 0.03553 0.00294

E4 0.25000 0.01338 0.00182

E5 0.08333 0.81002 0.99287

of the film (non-symmetrical case). This means that one side of the film will be
perturbed in pairs (regardless ε0; ν0 or εNz ; νNz ), but the other side of the film will
be without perturbation (substrate of the film is of the same material, but there
is no interaction between film and substrate).

We have analyzed relative permittivity for 5-layer ultrathin film and these
calculations are presented in Figs. 1–3 and in Table with calculated probabilities,
i.e. spectral weights gnz ;nz showing what probability arising exciton will have in
particular layer of the film, with particular energy. Limited with space, we can
present only few extreme cases, which can show how perturbation influence looks
like.

Among handful results, we have to mark out only most significant ones.

4. Conclusions

There are essential differences in optical properties in film structures in com-
parison with bulk:

1. Dielectric permittivity (absorption of external electomagnetic field) caused
by generation of excitons in the crystalline film is a discrete one with the
finite number of piques equal to the number of atomic planes in the film
along z-direction. In bulk, absorption will be continual band zone.

2. Dielectric permittivity dependence is a function of layer nz. For some layers
number of resonant piques will be less than number of atomic planes, while
on those layers some energies are forbidden, i.e. gnz ;nz = 0. This is true only
without perturbation influence. With various combinations of perturbation
parameters, all piques will be present, but some with negligible probabilities.

3. In general, perturbation ε0/Nz
shifts one pique toward higher energies, while

positive change ν0/Nz
broaden absorption zone. The most significant com-

bination of perturbation parameters is in the case of “monochromatic ab-
sorber”, with positive ε0/Nz

, and negative ν0/Nz
.
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