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The aim of this contribution is to analyze to some extent the reflectivity

of family of organic salts known as the Bechgaard salts. The reflectivity will

be calculated using a well known theoretical framework. Since this calcula-

tion demands as input data the electrical conductivity and the susceptibility,

existing results for these quantities were used. The main motivation for this

calculation was to attempt to “tie up” the reflectivity with various param-

eters of the Bechgaard salts in the Hubbard model. As these materials are

quasi-one-dimensional, it is hoped to extend in the future the results of this

contribution to systems of higher dimensionality. Details of the calculation

leading to an expression for the reflectivity will be discussed. It is nonlinear,

and shows the dependence of the reflectivity on various material parameters

(within the Hubbard model), such as the transfer integral or the band filling.

The position of the region where the reflectivity tends to zero will also be

estimated as a function of the model parameters. Finally, some possibilities

of extension of the results obtained to 2D systems are briefly mentioned.

PACS numbers: 78.67.–n

1. Introduction

The family of the organic conductors with the generic chemical formula
(TMTSF)2X was synthesized in 1980, and later named the Bechgaard salts [1].
In this formula, the symbol (TMTSF)2 denotes a complex called di-methyl-tetra-
selena-fulvalene, and X is one of various kinds of anions, which can be added to the
complex. A few examples of the anions are X = FSO3, ClO4, NO3 . . . Already early
work, reviewed in [2], has shown that the electrical conductivity of the Bechgaard
salts cannot be described within the standard theory of metals. A new theoretical
framework was obviously needed, and the choice “by default” was the Hubbard
model. The calculation of the electrical conductivity of these materials using the
so-called “memory function” method has recently been reviewed in [3]. The essen-
tial conclusion of [3] is that the calculation discussed there is in semi-quantitative
agreement with experimental data. In this paper, the reflectivity of the Bechgaard
salts will be calculated, using well known equations from optics [4], and results for
the electrical conductivity of these materials [3].
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2. The method of calculation

The propagation of an electromagnetic wave in a nonmagnetic material is
determined by the dielectric function ε(ω) and the refractive index N(ω); N(ω) =
[ε(ω)]1/2 [4]. Both of these quantities can be represented as complex functions

ε(ω) = εR(ω) + iεI(ω) (2.1)
and

N(ω) = n(ω) + iK(ω). (2.2)
The function K(ω) denotes the extinction coefficient. It can be shown [4] that

εR(ω) = n2 −K2, (2.3)

εI(ω) = 2nK. (2.4)
The dielectric function ε(ω) is related to the susceptibility χ(ω) by ε = 1 + 4πχ.
The susceptibility of the Bechgaard salts is a complex function and has recently
been determined in [3].

The reflectivity R(ω) is defined as the following ratio:

R(ω) =
(n− 1)2 + K2

(n + 1)2 + K2
. (2.5)

3. The results

In order to introduce material parameters into Eq. (2.5) one has to insert in
it the electrical conductivity; this can be achieved through the relation

εR(ω) + iεI(ω) = 1 + i
4π[σR(ω) + iσI(ω)]

ω
, (3.1)

where the conductivity σ has been expressed as a complex function: σ(ω) =
σR(ω) + iσI(ω). Similarily, ε(ω) = εR(ω) + iεI(ω). Combining the expressions for
the real and imaginary parts of ε and σ, some simple algebra leads to the following:

n =
2πσR

ωK
(3.2)

and

K4 + K2

(
1− 4πσI

ω

)
− n2 = 0. (3.3)

Inserting Eq. (3.2) into (3.3) and solving for K gives

K2
1,2 =

4πωσI − ω2 ± [(4πωσR)2 + (ω2 − 4πωσI)2]1/2

2ω2
. (3.4)

Inserting results for n and K into Eq. (2.5) leads to the final expression for the
reflectivity

R =
4π2σ2

R + K2[K2 + ω2(1− 2n)]
4π2σ2

R + K2[K2 + ω2(1 + 2n)]
. (3.5)

The real and imaginary parts of the conductivity are related to the corre-
sponding parts of the susceptibility by
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σI =
ω2

P

4πω

(
1− χR

χ0

)
(3.6)

and

σR =
ω2

PχI

4πωχ0
. (3.7)

It has been shown ([3] and later work) that the real part of the susceptibility
has the form of a sum

χR =
∑

i

Ai

ω + qit
, (3.8)

while the imaginary part can be expressed as

χI =
∑

i

Ai

π

ω

(qit)2
1

1− (ω/qit)2
ln

(
ω

qit

)2

. (3.9)

In this expression, Ai contains various material parameters, as defined within
the Hubbard model, and qi is a numerical constant. The expressions for the real
and imaginary parts of the susceptibility contain the chemical potential of the
electron gas, discussed in [3].

Using the fact that (1 + x)/(1 + y) ∼= 1 + x − y − xy + y2 . . ., and using
Eq. (3.2) one could transform Eq. (3.5) into a practically more useful expression
for R.

It can be shown that the reflectivity is approximately given by

R ∼= 1− 2ω

KπσR
+

1
2

Kω

(πσR)3
. (3.10)

4. Discussion

Expression (3.5) is the final result for the reflectivity of the Bechgaard salts.
It is obviously nonlinear. A considerably simplified form is given by Eq. (3.10).
Inserting into it Eqs. (3.4) and (3.6)–(3.9) into (3.5) or (3.10) gives the dependence
of the reflectivity of the Bechgaard salts on their basic parameters (as defined
within the Hubbard model): the Hubbard U , the hopping energy t, the band
filling n (implicitly, through the chemical potential), the frequency ω, the plasma
frequency ωP, and of course the inverse temperature β.

A detailed analysis of Eq. (3.5) and the influence of various material param-
eters on the behaviour of R would be too long for presentation here. However,
Eq. (3.10) makes some interesting conclusions relatively easy to obtain.

A frequently occurring question when analyzing the reflectivity of any optical
material is whether the reflectivity can under some conditions become equal to
zero, or become arbitrarily small.

Using Eqs. (3.2) and (3.6) it follows that R ∼= 0 for

ω =
2K(πσR)3

(2πσR)2 −K2
. (4.1)

Inserting the appropriate expressions for the conductivities and K one could de-
termine the range of material parameters for which R ∼= 0.
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Experiments on Bechgaard salts are usually performed at low temperatures.
As an illustration of the behaviour of the reflectivity of these materials calculated
in the present paper, the sums in Eqs. (3.8) and (3.9) were limited to 9 terms, and
then inserted into Eq. (3.10). The value of the reflectivity was calculated for the
same values of parameters as in [3]: N = 150; s = 1; U = 4t; ωP = 12t; ω = 3t;
χ0 = 1/3. The value of the reflectivity was normalized to the value at the point
(T = 100 K, t = 0.001 eV). The temperature dependence of the reflectivity thus
calulated for the band filling of n = 0.8 is shown in Fig. 1.

Fig. 1. Normalized reflectivity for n = 0.8.

It is clear from Fig. 1 that for the chosen set of parameters, and within the
approximation used in the present paper, the reflectivity decreases with cooling of
the specimen. Whether or not this can be stated as a general conclusion, will be
the subject of future work.
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