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1. Introduction

Sudarshan and Glauber [1, 2], independently, showed that the density oper-
ator of radiation can be written as

ρ̂ =
∫

d2αP (α)|α〉〈α|, (1)

where α ≡ αr + iαi is a complex number, d2α ≡ dαrdαi and |α〉 is the eigen-
state of the annihilation operator â (â|α〉 = α|α〉), carets (̂ ) denote operators,
and is called a coherent state [1]. Radiation is said to be in a classical state if
the weight function P (α) is not more singular than Dirac delta function δ2(α)
or is non-negative whereas non-classical features do not follow such a condition.
Earlier, the non-classical features, antibunching [3, 4] and squeezing [5–7], were
studied with academic interest [3–6, 8], as they provide instances where classical
physics fails and only a quantum theory can explain the facts. In squeezed op-
tical field, the fluctuations in one quadrature component are smaller than those
associated with a coherent state and it has potential application in reduction of
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noise level in optical communication [8–10] and in detection of the extremely weak
gravitational radiation [11–13]. Hong and Mandel [14, 15] generalized the concept
of ordinary squeezing to the 2N -th-order case and Hillery [16, 17] proposed the
so-called amplitude-squared squeezing (ASS) which is generated in some nonlin-
ear interactions such as second harmonic generation [16], degenerate parametric
amplification [17], two-photon absorption [17], anharmonic oscillator [18], Jaynes–
Cummings model [19] etc. The generalization of ASS was carried to orders > 2
and one finds it in literatures [20].

Recently, Prakash and Mishra [21] studied ASS (which can be detected in
principle by homodyning method [22]) in a light beam having a Gaussian statis-
tics and reported that this non-classical feature can be enhanced in a simple linear
mixing with a classical light beam via a beam splitter. Parametric amplification
[23, 24] is one such process, which generates such Gaussian light beams that ex-
hibit non-classical features. We investigate here the possibility of enhancement
of amplitude-squared squeezing for Mach–Zehnder interferometer as a next order
generalization. It is found that, under some conditions, amplitude-squared squeez-
ing at the output of second beam splitter is enhanced as compared to that at one
of output of the first beam splitter. But the maximum amount of amplitude-
-squared squeezing obtained by the present mixing is not greater than that ob-
tained by Prakash and Mishra [21].

2. Amplitude-squared squeezing in input Gaussian light beam
and output beams in Mach–Zehnder interferometer

If we consider hermitian operators Ŷ1,2 defined by Ŷ1 + iŶ2 = â2, i.e., Ŷ1 =
1
2
(â†2 + â2) and Ŷ2 = i

2
(â†2 − â2), the non-classical feature called ASS [16, 17] is

defined by
〈
(∆Ŷ1)2

〉
<

〈
â†â + 1

2

〉
or

〈
(∆Ŷ2)2

〉
<

〈
â†â + 1

2

〉
. We can also consider

the more general operator, Ŷθ ≡ 1
2
(â†2eiθ + â2e−iθ) and then ASS (the non-classical

feature) occur if

Yθ ≡ Tr[ρ̂(Ŷθ −
〈
Ŷθ

〉
)2]− [Tr(ρ̂â†â) + 1

2
] < 0. (2)

Minimum value of Yθ can easily be obtained and the non-classical feature can be
written as [21]:

Yθ,min = − 1
2

∣∣∣
〈
â4

〉− 〈
â2

〉2
∣∣∣ + 1

2
[
〈
â†2â2

〉− 〈
â†2

〉 〈
â2

〉
] < 0. (3)

For studying this non-classical feature it is customary [18, 21] to consider the
normalized quantity Wθ ≡ Yθ/[Tr(ρ̂â†â) + 1

2
] too.

Normally-ordered characteristic function of a light beam having a Gaussian
statistics may be written as

χN(ζ) = Tr[ρ̂ exp(ζâ†) exp(−ζ∗â)] = exp(−(Aζ2
r + Bζ2

i )), (4)
where ζ = ζr + iζi. The condition that χ(ζ) = χN(ζ) exp(− 1

2
|ζ|2) → 0 as

ζ → ∞ [25] gives (A + 1
2
) > 0, (B + 1

2
) > 0. Also uncertainty relation

〈(∆X̂1)2〉〈(∆X̂2)2〉 ≥ 1
4

gives (A + B + 2AB) ≥ 0. Special cases θ = 0 and
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π/2 give Yθ = Y1 = 1
2
(A2 + B2) and Yθ = Y2 = AB, respectively. Y2 can be

amplitude-squared squeezed if one of A and B are negative.
Using

Γ (m,n) = Tr(ρ̂â†mân) = (−1)n∂m
ζ ∂n

ζ∗χN(ζ)|ζ=0, (5)
we obtain

Yθ = 1
2
(A−B)2 cos θ + AB, (6)

and

Yθ/[Tr(ρ̂â†â) + 1
2
] = [(A−B)2 cos θ + 2AB]/(A + B + 1). (7)

Now let us consider the mixing of this Gaussian non-classical light beam
with a coherent light beam using a Mach–Zehnder interferometer (see Fig. 1).
In this scheme, we mix Gaussian light beam having annihilation operator â with
a coherent light beam having annihilation operator b̂ via beam splitter BS1, the
annihilation operators ĉ and d̂ are output of BS1 which then is mixed via a second
beam splitter BS2 with a relative phase shift eiδ.

Fig. 1. Mach-Zehnder interferometer.

The different outputs can be written in terms of inputs â and b̂ [21, 26, 27]
as [

ĉ

d̂

]
=

[ √
T1 exp(iφ1T)

√
R1 exp(iφ1R)

−√R1 exp(−iφ1R)
√

T1 exp(−iφ1T)

][
â

b̂

]
, (8)

and [
ê

f̂

]
=

[ √
T2 exp(iφ2T)

√
R2 exp(iφ2R)

−√R2 exp(−iφ2R)
√

T2 exp(−iφ2T)

] [
ĉei(φ0+δ)

d̂eiφ0

]
, (9)

where
√

Rj exp(−iφjR) and
√

Tj exp(−iφjT) (j = 1, 2) are the coefficients for
reflection and transmission for amplitudes for beam splitter BS1 or BS2, reflection
coefficients for mirrors M1 or M2 are equal to exp(iφ0), and beam reflected by M1
is made to experience a phase shift δ.

Let us consider mixing of a Gaussian light beam (annihilation operator â)
exhibiting ASS with the coherent light beam (annihilation operator b̂) of intensity
as shown in Fig. 1 and straightforward calculations for minimum value of Yθ for
the a-, c- and e-modes give
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Yθa,min = AB, Tr(ρ̂â†â) + 1
2

= 1
2
(A + B + 1), (10)

Yθc,min = 1
2
T 2

1 (A + B)2 + 2R1T1(A + B)|α0|2 − 1
2
|T 2

1 (B −A)2e4iφ1T

+2R1T1(B −A)α2
0 exp(2i(φ1T + φ1R))]|, (11)

Tr(ρ̂ĉ†ĉ) + 1
2

= R2
1|α0|2 + 1

2
T 2

1 (A + B) + 1
2
, (12)

Yθe,min = 1
4
(
√

T1T2 −
√

R1R2)4(A + B)2 + (
√

T1T2 −
√

R1R2)2

×(
√

R1T2 +
√

T1R2)2(A + B)|α0|2 − 1
4
|[T1T2 exp(2i(α1 + α2 + ζ + δ))

+R1R2 exp(2i(β2 − β1 + δ))− 2
√

R1R2T1T2 exp(i(α1 + α2 + β2

−β1 + δ + 2ζ))]2(B −A)2 + 2[T1T2 exp(2i(α1 + α2 + ζ + δ))

+R1R2 exp(2i(β1 − β2 + ζ)) + 2[T1T2 exp(2i(α1 + α2 + ζ + δ))

+R1R2 exp(2i(β2 − β1 + ζ))− 2
√

R1R2T1T2 exp(i(α1 + α2 − β1 + β2

+δ + 2ζ))][R1T2 exp(2i(β1 + α2 + ζ + δ)) + R2T1 exp(2i(β2 − α1 + ζ))

+2
√

R1R2T1T2 exp(i(β1 + β2 − α1 + α2 + δ + 2ζ))](B −A)|α0|2|, (13)

Tr(ρ̂ê†ê) + 1
2

= (
√

R1T2 −
√

R2T1)2|α0|2

+ 1
2
(
√

T1T2 −
√

R1R2)(A + B) + 1
2
. (14)

As the ports “e” and “f” are symmetrical in nature, therefore, we will study the
non-classical effect for port “e” and a similar discussion may occur for port “f”.

3. Discussion of the results

With φ1T+φ2T+δ+ζ = φ2R−φ1R+ζ = γ/2, σ1 ≡ (
√

R2T1−
√

R1T2)2, and
σ2 ≡ (

√
T2T1−

√
R1R2)2 we can discuss two cases: (i) for α0 = |α0| exp(i(α1−β1))

and (B −A) > 0, Wθe,min = (2σ2
2AB + 4σ1σ2A|α0|2)/[σ2(A + B) + 2σ1|α0|2 + 1];

and (ii) for α0 = |α0| exp(i(α1 − β1 + π/2)), (A − B) > 0, Wθe,min = (2σ2
2AB +

4σ1σ2B|α0|2/[σ2(A+B)+2σ1|α0|2+1]. Taking into account these two restrictions
on A and B and on α0, we can see that Wθa,min < Wθe,min under some conditions
that are dependent on the values of Tj , Rj , |α0|2, A, and B. Similar conditions may
occur in the case of port “f”. But, it is remarkable to note that in no way we find
the situations where the maximum amount of amplitude-squared squeezing obtained
by the present mixing is greater than that reported by Prakash and Mishra [21]. For
example, if we maximize (i.e., most negative), Wa, Wc, and We by a simple C++
programming, we find that (i) T1 = 0.884992, A = −0.1, B = 0.125, |α0|2 = 25,
Wa = −0.02439, Wc = −0.153177; (ii) T1 = 0.9, T2 = 0.6, A = −0.1, B = 0.125,
|α0|2 = 25, Wa = −0.02439, Wc = −0.152802, We = −0.152776. It is to be
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noted that Prakash and Mishra reported another non-classical features that can
be enhanced by using such a procedure [28, 29].
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