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Nonlinear dissipative systems, particularly optical dissipative solitons

are well described by complex Ginzburg–Landau equation. Solutions of two-

and three-dimensional complex cubic-quintic Ginzburg–Landau equation as-

suming exponential dependence on propagation parameter are studied. Ap-

proximate analytical stationary solutions of cubic-quintic Ginzburg–Landau

equation are found by solving systems of ordinary differential equations. We

are solving two-point boundary problems using adapted shooting method.

Stable and unstable branches of the bifurcation diagram are identified using

linear stability analysis. In this way we established conditions for generation

and propagation of stable dissipative solitons in two and three dimensions.

These results are in agreement with numerical simulation of cubic-quintic

Ginzburg–Landau equation and the recently established approach based on

variational method generalized to dissipative systems and therein established

stability criterion.

PACS numbers: 42.65.Sf, 42.65.Tg

1. Introduction

There is a growing interest for optical solitons as form preserving self-trapped
structures. Spatial and spatiotemporal solitons are good candidates in all-optical
signal processing since they are self-guided in bulk media [1]. Stable operation of
laser systems, closely related to the issue of dissipative soliton stability, is crucial
for generating ultrashort pulses [2]. In order to generate few-parameters family
of solitons with either two or three transverse dimension the diffraction and/or
dispersion have to be compensated by spatial and/or temporal self-focusing [3].
However, real systems are generally dissipative, thus, linear and nonlinear gain
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and loss have to be taken into account. Nonlinear dissipative systems, particu-
larly optical dissipative solitons are well described by complex Ginzburg–Landau
equation [4]. Dispersion and diffraction in optical pulse are compensated by inter-
play of opposite sign cubic and quintic nonlinearities of the complex cubic-quintic
Ginzburg–Landau equation (CQGLE):

i
∂E

∂z
+ ∆E + |E|2E + ν|E|4E = iδE + iε|E|2E + iµ|E|4E + iβ∆E, (1)

where E is the normalized complex envelope of the optical field. ∆E stand for
the D-dimensional Laplacian describing beam diffraction and/or anomalous group
velocity dispersion, where transverse dimension D = 1, 2, 3 corresponds to space
(x and y) and time (t) variables. In order to prevent the wave collapse the sat-
urating nonlinearity is required. Therefore, cubic and quintic nonlinearities have
to have opposite signs, i.e., parameter ν is negative. Depending on the sign of the
dissipative parameter δ the first term is either linear gain or loss. The cubic and
quintic gain-loss terms contain respectively parameters ε and µ. The last term
accounts for the parabolic gain if β > 0. A prerequisite for generation of dissi-
pative solitons is a simultaneous balance of not only diffraction and/or dispersion
with self-focusing but also gain with loss reducing, for a given set of parameters,
a family of solutions to a fixed solution. One has to resort to computer simula-
tions in order to investigate the solutions of such an equation. General dynamical
properties of Eq. (1) are rather complex, making analytical approximation highly
desirable. In the recently established approach we investigated multi-dimensional
CQGLE using variational method generalized to dissipative systems and therein
established stability criterion [5, 6].

Here, we study approximative solutions of two- and three-dimensional
CQGLE assuming exponential dependence on propagation parameter
E(r, z) = E0 exp[iΩz]. This propagation parameter Ω corresponds to the
spatial frequency. The soliton radius is supposed to be r =

√
x2 + y2 + t2

imposing a constraint to independent transverse variables x, y, and t. As a
consequence, the input pulses must be symmetric with respect to those variables
[3, 6]. In this case the approximative analytical stationary solutions of CQGLE
can be found by solving systems of ordinary differential equations. We are solving
two-point boundary problems using an adapted shooting method. Stable and
unstable branches of the bifurcation diagram are identified. In this way we
established conditions for generation and propagation of stable dissipative solitons
in two and three dimensions. These results are in agreement with numerical
simulation of CQGLE and the recently established approach based on variational
method [5, 6].

2. Eigenvalue problem

In order to study dynamics of dissipative solitons described by a (D + 1)-
-dimensional CQGLE we express the field E through the amplitude A and the
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phase Ψ , both real functions of z:

E = A exp[iΨ ]. (2)
Substituting Eq. (2) into Eq. (1) and separating the real and imaginary parts, we
get two equations

1
2

∂A2

∂z
+∇(A2∇Ψ)− δA2 − εA4 − µA6 − β[A∆A−A2(∇Ψ)2] = 0, (3)

and

A∆A−A2 ∂Ψ
∂z

−A2(∇Ψ)2 + (1 +∇ΨA2)A4 + β∇(A2∇Ψ) = 0. (4)

Since phase appears in Eqs. (3), (4) only through its derivatives, new variables
C = A2∇Ψ and ∂Ψ/δz = Ω can be introduced. The spatial frequency Ω is the
eigenvalue we are looking for. After some algebra we get

∆A =
C2

A3
+

Ω − βδ

1 + β2
A− 1 + βε

1 + β2
A3 − ν + βµ

1 + β2
A5, (5)

∇C =
δ + βΩ
1 + β2

A2 +
ε− β

1 + β2
A4 +

µ− βν

1 + β2
A6. (6)

For radial symmetry C = Cer as well as

∇C = ∇rC +
D − 1

r
C (7)

and

∆A =
1

rD−1

d
dr

(
rD−1 dA

dr

)
. (8)

In this case Eqs. (5), (6) can be written as a system of three ordinary differential
equations (ODE):

dA

dr
= B, (9)

dB

dr
= −D − 1

r
B +

C2

A3
− α1A− α3A

3 − α5A
5, (10)

and
dC

dr
= −D − 1

r
C + α2A

2 + α4A
4 + α6A

6, (11)

where

α1 = −Ω − βδ

1 + β2
, α3 =

1 + βε

1 + β2
, α5 =

ν + βµ

1 + β2
,

α2 =
δ + βΩ
1 + β2

, α4 =
ε− β

1 + β2
, α6 =

µ− βν

1 + β2
. (12)

For practical numerical resolution it is convenient to introduce substitutions
B = FA and C = GA2. As a consequence, the system of Eqs. (9)–(11) re-
duces into
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dA

dr
= FA, (13)

dF

dr
= −D − 1

r
F − F 2 + G2 − α1 − α3A

2 − α5A
4, (14)

and
dG

dr
= −D − 1

r
G− 2GF + α2 + α4A

2 + α6A
4. (15)

For r = 0 functions F and G are zero and A = A0. For r → ∞ the function A

asymptotically tends to zero. Numerical solutions of Eqs. (13)–(15) obtained by
shooting method are presented in Figs. 1–4.

Fig. 1. Upper stable and lower unstable bifurcation curve of amplitude A as functions

of the parameter ε for µ = −0.65 in 2D case.

Fig. 2. Bifurcation curve of spatial frequency Ω as functions of the parameter ε in 2D

case.

Indeed, the soliton is a localized structure thus its amplitude has to vanish
exponentially out of localization region whenever the spatial frequency Ω becomes
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Fig. 3. Upper stable and lower unstable bifurcation curve of amplitude A as functions

of the parameter ε for µ = −0.5 in 3D case.

Fig. 4. Upper stable and lower unstable bifurcation curve of spatial frequency Ω as

functions of the parameter ε in 3D case.

an eigenvalue. For each set of dissipative parameters of a two-dimensional system
it is necessary to adjust simultaneously the amplitude and the spatial frequency
in order to find by shooting method the corresponding eigenvalue of Ω . As a
consequence, in two-dimensional system for instance, for dissipative parameters
µ = −0.65, β = 0.05, and δ = −0.01, we obtain a bifurcation curve for the ampli-
tude A as function of the dissipation parameter ε in Fig. 1. Figure 2 represents
the plot of the spatial frequency Ω versus the same parameter ε.

The upper branch of these bifurcation curves corresponds to stable solutions
of CQGLE, and the lower one to unstable. For three-dimensional case, for the
chosen set of parameters µ = −0.5, β = 0.05, and δ = −0.01, bifurcation curves
for amplitude and spatial frequency are given respectively in Figs. 3 and 4.

In conclusion, stationary CQGLE reduces into a set of three coupled ordinary
differential equations. These equations can be solved numerically using the shoot-
ing method. Resulting bifurcation curves are in good agreement with the results
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obtained using variational approach and established stability criterions confirmed
by numerical simulations [5, 6].
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